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Abstract-Natural convection in a cubical cavity heated from below is examined by means of the three- 
dimensional computation of the time dependent Navier-Stokes and energy transport equations in the 
range of Rayleigh numbers 3500 $ Ra < 10000. The Boussinesq approximation has been used to model 
buoyancy effects on momentum transfer. Four different stable convective structures occur with orientation 
and flow circulation dictated by the combined effect of the four adiabatic confining lateral walls. Three of 
these structures are typical single rolls with their axis of rotation or vorticity horizontal and either parallel 
to two opposite vertical walls, structures Sl and S3, or orientated towards two opposite vertical edges (S2). 
The fourth structure (S4) is a nearly toroidal roll with the descending motion aligned with the four vertical 
edges and the single ascending current along the vertical axis of the enclosure. The effect of the Rayleigh 
number and the type of flow structure on heat transfer rates at the top and bottom plates is also reported. 
For the single roll-type structures the surface averaged Nusselt number increases with a power of the 
Rayleigh number that changes within the range studied from 0.7 to 0.4. A similar trend is observed for the 
toroidal roll but in this case heat transfer rates are 65% lower. The distribution of local heat transfer 
coefficients at the top and bottom surfaces agrees with the topology of the flow patterns portrayed with 
the aid of the second invariant of the velocity gradient and the modulus of the cross product of the 

corresponding velocity and vorticity fields. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

Natural convection is a fundamental mechanism for 
momentum, heat and mass transfer in some natural 
phenomena and of interest in engineering systems. 
Independently from its geophysical, meteorological, 
astrophysical and engineering applications, natural 
convection in enclosures heated from below has been 
the topic of numerous theoretical and experimental 
studies because of its geometric simplicity and fun- 
damental implications. Among all possible con- 
figurations, the cubical cavity offers the additional 
interest of not having any preferred direction other 
than the direction of gravity. This characteristic 
enables the occurrence of different complex flow struc- 
tures under steady-state conditions for a given set of 
Rayleigh and Prandtl numbers. Furthermore, each 
structure affects the transfer of heat from the hot 
to the cold plate differently and the average Nusselt 
number becomes a function of the Rayleigh and 
Prandtl numbers and of the type of structure present. 

The Rayleigh-BCnard convection (RB) problem [l] 
in cavities has been extensively studied theoretically, 
experimentally and numerically since the beginning of 
the present century [2, 31. Koschmieder [4], Normand 
et al. [5], Oertel [6], Ostrach [7] and Yang [8] defined 
and described the main characteristics of the flow in 

t Author to whom correspondence should be addressed. 

heated enclosures. Flow stability is mainly affected by 
fluid properties, enclosure geometry and the external 
field. It is well known that there is a critical Rayleigh 
number (Ra,) for RB convection beyond which a 
buoyancy-driven flow develops with a corresponding 
increase in transfer rates. In the cubical cavity with 
lateral adiabatic walls the critical Rayleigh number is 
3446 [9]. This theoretical value agrees with the exper- 
imental work of Heitz and Westwater [IO]. On the 
other hand, RB convection in a cubical cavity with 
perfectly conducting lateral walls presents a critical 
Rayleigh number of 7000 [ 11, 121. 

Concerning the topology of the flow. Ozoe et nf. [ 131 
obtained two convective structures in the supercritical 
region 4000 < Ra < 8000 for the cubical cavity with 
adiabatic lateral walls. Both patterns may be described 
as single circulating rolls, one with axis parallel to two 
opposite vertical walls and the other with axis parallel 
to the diagonal of the horizontal walls. Recently Her- 
nandez and Frederick [14] found numerically a new 
convective structure at Ru = 8000 which exhibits a 
characteristic toroidal like form, with flow descending 
near the four vertical edges and ascending at the cen- 
tral vertical axis of the cube. 

The purpose of this study is to characterize numeri- 
cally the natural convection in a cubical cavity where 
buoyancy has been induced by imposing a moderate 
temperature difference between the bottom (hot) and 
the top (cold) plates with perfectly adiabatic vertical 
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NOMENCLATURE 

.Y gravitational acceleration [m s ‘1 Greek letters 
H /H x W( [m s ‘1 thermal diffusivity [m’ s’] 
L reference length [m] i; thermal expansion coefficient [K -‘I 
I1 normal dimensionless coordinate o,, Kronecker delta 
N number of grid nodes in one direction I kinematic viscosity [m’ s ‘1 
Nu Nusselt number. hL/k n second invariant of the velocity 
P pressure [Pa] gradient tensor [s-‘1 
Pf Prandtl number, ~11~ vorticity vector [s ‘1 
Rll Rayleigh number. g/IATL”,:vct ;I; rotation tensor, !2,,!2,, = - 0’/2 [s ‘1 
RUC critical Rayleigh number A” increment. 

S!, strain tensor [s’] 
T temperature [K] Superscripts and subscripts 
u velocity vector [m s ‘1 s surface averaged quantity 
II. I‘, II. velocity components * dimensionless quantity 

Ims ‘I c cold wall 
.I-. J‘, z Cartesian coordinates h hot wall 

b-4. 0 average quantity. 

walls. The occurrence and topology of the different 
types of stable convective structures are examined 
within the interval 3500 ,< Ra < 10000 and their 
effect in heat transfer rates at the top and bottom 
plates is characterized. Flow and heat transfer for 
the two roll-typed structures previously described by 
Ozoe rf cl/. [ 131 with a coarser grid, hereinafter referred 
to as Sl and S2. are determined. The occurrence of an 
additional new roll-type structure (S3) with different 
topological and heat transport features is also 
reported. Finally. the flow and heat transfer charac- 
teristics of the toroidal roll (S4) described by Her- 
nandez and Frederick [14] at Ra = 8000 and a 21’ 
grid. is determined at Ra = 9000 and 10 000 using a 
finer 41’ grid. 

GOVERNING EQUATIONS 

The geometry of the cubical cavity and the coor- 
dinate system is shown in Fig. 1. Both the bottom and 
the top plates are taken to be isothermal with the 
lower one held at temperature Tn which is moderately 
greater than the temperature of the upper wall Tc, 
The four vertical walls are perfectly insulated. 

The fluid considered in this study is air (Pr = 0.7 I ). 
Compressibility effects. viscous dissipation and the 

??Cold plate 

0 Adiabatic walls 

??Hot Plate 

Fig. I. Physical model of the cubical cavity heated from 
below. 

variation of fluid properties with temperature have 
been neglected, with the only exception of the buoy- 
ancy term, for which the Boussinesq approximation 
has been adopted. As a result, the Navier-Stokes and 
the energy transport equations are coupled only by 
the body force term, where linear dependence of den- 
sity with temperature is assumed. According to Gray 
and Giorgini [ 151. the Boussinesq approximation for 
air at mean temperature T, = 15°C and P = 1 atm. 
holds for temperature differences up to 18.6 C when 
the two horizontal walls are 1 m apart. 

The reference scales for length. velocity, time and 
pressure are, respectively, L, a/L. L’/sl and pd/L’. The 
non-dimensional temperature is defined as 

T* _ -T-T, _ T- (TH + 7-c)/2 
AT TH - T, (1) 

while all other variables are converted into dimen- 
sionless form using the above scales. The non-dimen- 
sional governing transport equations in Cartesian 
coordinates are, 

c;u* 
-CO 
?.I? 

for continuity. 

(2) 

?u,* + d(u,$,?y l?p* pu* 

i-t* 
- p=-G+Pr 

2X* I 
&* + RaPrT*b 

I I 

(3) 

for momentum and 

?T’ c:(u;T*) (7’T* 
(7r*+ (7.q = ~ (7u*.x* ‘i I 

for energy. 

(4) 
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NUMERICAL METHOD 

Numerical scheme 
The CFD code 3DINAMICS [ 16, 171 was used to 

obtain numerical solutions of the above governing 
equations with second order accuracy and in terms of 
the primitive variables. In this code equations (2)-(4) 
are discretized following a control volume scheme [ 181 
with non-uniform three-dimensional staggered grids. 
All computational grids used in the present study were 
regular. The convective fluxes across the surfaces of 
the control volumes were discretized using a second 
order QUICK scheme [19]. 3DINAMICS incor- 
porates the non-uniform grid version of QUICK pro- 
posed by Perng and Street [20] to enhance conver- 
gence. Second order approximations were also 
implemented for the diffusive fluxes with a centered 
scheme. The SMAC algorithm [21] was applied to 
compute the pressure field. This algorithm is based on 
a typical predictorcorrector scheme and leads to 
a fractional step method for the velocity-pressure 
coupling. 

A critical step in the pressure algorithm, that affects 
the global performance of the code, is the solution of 
the Poisson equation. According to Koshla and Rubin 
[22] a much faster solution of Poisson-like equations 
is obtained with the Conjugate Gradient Method than 
with other methods. This methodology has been 
adopted in the present study. Convergence was 
increased by using the diagonal scaling technique to 
precondition the coefficient matrix. A semi-implicit, 
second order accurate, AD1 method [23] was applied 
for time-marching integration. 

Heat transfer rates at the top and bottom walls is 
characterized with local and surface averaged Nusselt 
numbers defined, respectively, by 

aT* 
N” = az* _.=Qor, I I 

and 

1 1 

Nus = ss NM d-u* dy* 
0 0 

(6) 

Equations (5) and (6) were solved using second order 
finite differences and interpolation schemes. 

The boundary conditions for the dynamic field are 
u, = 0 at the walls, i.e., all six walls of the cavity are 
assumed to be rigid and at rest. The thermal boundary 
conditions are (aT/&) = 0 at the four adiabatic ver- 
tical walls, TR = 0.5 at bottom plate and Tr = -0.5 
at the top plate. 

Even though the RB problem with air in a cubical 
enclosure at Rayleigh numbers below 10 000 has only 
steady solutions, the numerical simulations using 
3DINAMICS provide a complete description of the 
time-evolution towards steady-state conditions. 

As initial conditions, the fluid was assumed to be at 
rest and a conductive temperature distribution was 
established in the whole domain. In order to enhance 

the RB convective regime, a random disturbance in 
the temperature field with an amplitude of f0.05 
(10% of the local temperature) was added to this 
initial thermal field [24]. This strategy avoids the pre- 
determination of the final convective structure. All 
four structures described in this work have been 
obtained starting all computations from this unbiased 
initial condition at different Rayleigh numbers. The 
use of other initial conditions, such as a non-uniform 
heating or cooling at the bottom or top plates, respec- 
tively, or a non-adiabatic condition at any of the four 
lateral walls during a short computational time, could 
favour the development of any of the aforementioned 
four structures, as well as that of other convective 
motions not reported in the present study for the range 
of Rayleigh numbers covered. Results obtained at a 
given Rayleigh number were successively used as 
initial conditions for computations at higher or lower 
Rayleigh numbers, to check the stability of the 
structures. 

Validation 
Cuesta [ 161 and Cuesta et al. [I 71 validated 

3DlNAMICS describing the flow in a cubical cavity 
driven either by the upper moving lid or the sim- 
ultaneous heating and cooling of two opposite vertical 
walls. Among these computations, the natural con- 
vection results are of special relevance to the present 
work. As it can be seen in Table 1, heat transfer rates 
predicted by Cuesta et al. [17] for two lateral and 
opposite walls in the range lo3 < Ra < lo6 are in good 
agreement with numerical predictions reported else- 
where [25-281. 

The performance of 3DINAMICS in the RB prob- 
lem is established by comparing predictions with other 
numerical results and experimental data, and by ver- 
ifying the grid-independence of the present results. 
First, present results are consistent with previous com- 
putations, namely those of Ozoe et al. [13] and Her- 
nandez and Frederick [14]. Table 2 shows predicted 
Nusselt numbers for the structures Sl and S4 at 
different values of the Rayleigh number. It should 
be noted that Ozoe et al. [13] reported two different 
structures of the flow, Sl and S2, but only provided 
heat transfer rates for structure Sl. There is good 
agreement between present and previous predictions 
with discrepancies being caused by differences in grid 
size and Prandtl number. 

The grid independence study was carried out at 
Ra = 10000. Starting with the coarsest grid of 213 
control volumes, the grids were successively refined to 
31”, 413 and 513 with uniformly distributed nodes. 
Figure 2 shows the evolution of the predicted surface 
averaged Nusselt number with the inverse of the num- 
ber of grid points for the three single roll-typed struc- 
tures Sl-S3 reported in this study. Structure S4 can 
only be obtained at Ra 10 000 with the finest grids of 
41’ and 513 nodes. It should be noted that at this 
Rayleigh number this structure is close to a new tran- 
sition and the influence of the boundary layer at the 
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Table 1. Comparison between several surface averaged Nusselt numbers reported in the literature for the 
side-heated cubical cavity 

Ra 
Cuesta [ 161 Fusegi rt al. [25] Haldenwang [26] B. Mabrouk [27] David-Jones [28] 

3D 3D 3D 3D 2D 

IO’ 1.052 1.085 1.073 1.118 
10J 2.187 2.1 2.083 2.243 
IO5 4.512 4.361 4.31 4.452 4.519 
IO” 8.846 x.77 X.61 9.215 8.8 

Table 2. Comparison between several surface averaged Nusselt numbers reported in the literature for the cubical cavity 
heated from below 

Author 

Ozoe er u/. [13] 

Hernandez and Frederick [ 141 

RU 

4000 
6000 
8000 

x000 

N% 
PI Structure Nns present work 

I Sl 1.165 (9’) 1.164 (41’) 
I SI 1.535 (9’) 1.522 (41’) 
I Sl 1.746 (9’) 1.755 (413) 

0.71 SJ 1.1 (3ll) 1.04 (41’) 
I .06 (212) 

1.85 

N”s 

1.80 

1.75 

1.70 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

104/N3 
Fig. 2. Surface averaged Nusselt number for the convecttve 
structures Sl. S2 and S3 at Ra = 10000 for different grid 

densities. 

lateral walls can only be captured with these finest 
grids. According to Fig. 2, increasing the nodes from 
4 1’ to 5 I 3 does not represent more than 0.3 % variation 
in terms of the surface averaged Nusselt number. A 
similar discrepancy has been obtained for S4. Accord- 
ing to these results. the regular mesh of 4 I 3 points was 
used in all the computations. 

To our knowledge. only numerical results are avail- 
able in the literature for cubical cavities. In order to 

check 3DINAMICS with experimental results, those 
obtained by Arroyo and Saviron [29] for Rayleigh 
number 11000 and Prandtl number 130, at an average 
temperature of 25°C. have been selected. The physical 
dimensions of the cavity used by Arroyo and Saviron 
[29] are L.Y = 25 mm, L,v = 14.6 mm and LZ = 12.3 
mm, with silicon oil (Pr = 130) as working fluid. Fig- 
ure 3 shows the comparison between these data and 
present predictions. in terms of isoline of either con- 
stant u-velocity or constant n,-velocity. at the central 
(J = constant) plane, where r-velocity equals zero. 
The numerical results obtained with a regular grid of 
41 x 21 x 2 1 nodes are in good agreement qualitatively 
and quantitatively with the experimental data. Note 
that this grid is coarser in the .Y and z directions than 
the 41’ used in the present calculations for the cubical 
cavity. 

RESULTS AND DISCUSSION 

The visualization of three-dimensional (3D) 
dynamic fields is still a challenge in CFD. mainly 
because of their vectorial character. The objective of 
such visualization is to portray an image of the flow 
structure. The most common approach is to plot vec- 
tor fields or, similarly, fields of streamlines, pathlines 
or streaklines, all coincident in steady-state regimes, 
The definition of stream surfaces is somehow ambigu- 
ous because there are infinite ways of connecting 
streamlines. Despite this fact, this technique is one of 
the most suitable ways to ‘freeze’ a 3D flow field [30]. 
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(a> (b) 

X X 

Fig. 3. Isovelocity component maps for w, (a) and (c): Aw = 44.9 pm SC’, and U, (b) and (d): Au = 
30.6 pm SK’ at Ra = 11000 (Pr = 130). (a) and (b) Numerical solutions; (c) and (d) experimental 

data of Arroyo and Saviron [29]. 

Usually, secondary magnitudes such as pressure, 
the modulus of vorticity or the enstrophy (the square 
of vorticity) are used to explore and identify flow 
structures in a dynamic field. These variables, 
however, take finite but usually large values at the 
walls, which can interfere and lead to a mis- 
interpretation of the structure present in the flow. An 
alternative is to use a passive contaminant, such as 
temperature in an uncoupled dynamic field. to mark 
any structure present. This technique has the problem 
of diffusion which can smear the picture of a flow 
structure, specially at the edges. Also, it is difficult to 
establish initial conditions for this thermal field. In 
fact, the use of a passive contaminant with zero diffus- 
ivity is the basis of the method described by van Wijk 
et al. [30] for plotting stream surfaces. 

au* au* n* = 22 = S?$?+Q?fi* 
ax: ax* I, I, 1, I, (8) 

The second invariant II has already been used to 
identify structures in turbulent flows [31, 321, because 
regions of space with negative values of II coincide 
with regions where rotation prevails over strain. The 
variable His related to helicity [33], the scalar product 
of vorticity and velocity 

(9) 

and has the property of emphasizing regions of rela- 
tively high vorticity and velocity without falling to 
zero in two dimensional flows, as is the case with 
helicity. 

In additions to particle tracking and plotting sur- 
faces of constant temperature we have explored, in 
this work, two alternative magnitudes to describe the 
structural characteristics of the flow: the second 
invariant of the velocity gradient tensor, hereinafter 
called II, and the modulus of the vector product of 
the velocity and the vorticity, hereinafter called H. In 
non-dimensional form, these quantities are defined, 
respectively, by 

Figures 4 and 5 show the isosurfaces of II and 
H, respectively, for the three structures obtained at 
Ra = 4000 (Sl-S3). Figures 6 and 7 depict the same 
isosurfaces for the four structures (Sl-S4) present at 
Ra = 9000. Figures 4 and 5 include some particle 
paths to illustrate that the fluid circulates around the 
closed surfaces with large negative values of IT. 

Dynamic field 

H* = ]U* xw*I (7) 

The dynamic fields plotted in Figs. 47 indicate 
that structures Sl and S3 are formed by single rolling 
motions with clockwise or anti-clockwise rotation. 
The axis of rotation of the roll is parallel to the coor- and 
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(cl 
Fig. 4. Isosurfaces of the second invmant of the veloaty gradient tensor at Ra = 4000 for the structures 

SI (a) rI* = -. 250: s2 (b) rl* = -200; (c) rl* = -190. 

dinate s or y, indistinctly. These two possible orien- 
tations are equivalent due to the symmetry of the 
enclosure. Their sense of rotation depends only on 
the random thermal distribution mentioned before. 
Increasing the Rayleigh number produces an elon- 
gation of the SI and S3 roll towards the two opposite 
top and bottom edges that are parallel to the axis of 
rotation and towards which the structure is tilted. 
There is a great similarity between Sl and S3 but some 
differences are revealed when comparing Figs. 4(a) 

and (c) or 5(a) and (c). The structure S3 is more tilted 
and elongated towards the top and bottom opposite 
edges than Sl. This fact produces a substantial differ- 
ence in the heat transfer rates for both structures at 
the top and bottom plates, as it is discussed in the next 
section. 

The second structure (S2) is also a single roll but 
with a diagonal mode of circulation. It shows a greater 
three-dimensionality than Sl and S3 and the flow is 
strongly affected by the increase of the Rayleigh 
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(b) 

3239 

(cl 
Fig. 5. Isosurfaces of the cross product modulus at Ra = 4000 for the structures Sl (a) H* = 175 ; S2 (b) 

H*=l30;S3(c)H*=130. 

number. Comparison of the isosurfaces of the second 
invariant for S2 at Ra = 4000 and at Ra = 9000, Figs. 
4(b) and 6(b), shows that the flow in the regions near 
the corners of the cubical cavity is clearly modified. 
The structure is somehow ‘twisted’ towards the four 
opposite corners at the highest Rayleigh number. The 
particle traces also reveal this change. 

The critical Rayleigh number for the three roll 
structures Sl-S3 is about 3500, in agreement with the 
theoretical prediction of Catton [9] and the exper- 
imental work of Heitz and Westwater [lo]. 

The structure S4 has been found to exist only for 
Rayleigh numbers equal to or above 8000. Present 
heat transfer results (Fig. 11) suggest an approximate 
critical Rayleigh number of 7700. The topology of 
S4 over the range of Rayleigh numbers studied is 
characterized by a cold descending current in the cen- 
tral region of the enclosure. Heating of this current at 
the bottom plate while moving towards the four lower 
corners causes the fluid to ascend parallel to the ver- 
tical edges and to close the recirculation pattern 
depicted in Figs 6(d) and 7(d) in terms of n and H, 
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(a) (b) 

Fig. 6. Isosurfaces of the second invariant velocity gradlent tensor at Ra = 9000 for the structures Sl (a) 
n* = -3000; S2 (b) II* = -4000; S3 (c) II* = -3000; S4 (d) n* = -500. 

respectively. It is also feasible to simulate numerically 
the reverse flow pattern. i.e. ascending hot fluid at the 
core and descending at the vertical edges, depending 
on the initial conditions used. 

Figure 8 depicts the flow pattern of S4 at Ru = 8000 
in terms of the velocity field at the 2D plane X* = 0.5. 
This method of visualization has been the most widely 
used in the literature to analyse vector fields [34], 
because it provides the direct representation of the 
direction and magnitude of vectors at discrete 
locations. Figure 8 shows that the projection of the 
velocity field on the vertical plane X* = 0.5 is in good 
agreement with the corresponding maps reported by 

Hernrindez and Frederick [14] for this structure. 
Inspection of this figure clearly shows that a single 
roll with toroidal shape occurs at Ra = 8000, in 
accordance with the topology inferred from Figs. 6(d) 
and 7(d) for Ra = 9000. 

Thermal field 
The thermal field inside the cavity at Ra = 4000 and 

at Ra = 9000 is visualized in Figs. 9 and 10, respec- 
tively, in terms of surfaces of constant temperature. 
The form of these isosurfaces indicates the mode of 
circulation. The temperature isosurfaces at Ra = 4000 
exhibit a more intense two-dimensionality and strati- 
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(c) (4 
Fig. 7. Isosurfaces of the cross-product modulus at Ra = 9000 for the structures Sl (a) H* = 1100; S2 (b) 

H* = 1100 ; S3 (c) H* = 900 ; S4 (d) H* = 120. 

fication than those corresponding to Ra = 9000, 
which, in turn, are more affected by the lateral walls. 
Figures 9(a) and (c) or 10(a) and (c) show that there 
are no obvious visual differences between the thermal 
fields corresponding to Sl and S3, whereas the flow 
patterns previously discussed for these structures 
reveal intrinsic structural differences between them. 
These results indicate that the thermal field is not a 
convenient way for visualizing the topology of how 
structures in enclosures or near walls. 

The effect of the type of structure on heat transfer 
rates at the top and bottom plates is shown in Fig. 11, 
where the 2D distribution of the local Nusselt number 

is plotted for Ra = 9000. The 2D thermal fields are 
given in terms of lines of constant local Nusselt num- 
bers for the four flow structures SlLS4 identified. In 
these plots, a maximum absolute value of the Nusselt 
number corresponds to a region of impingement of 
an ascending or descending current, while relatively 
low absolute values correspond to regions of bound- 
ary layer flow for the fluid leaving the two plates. 
Figures 11 (a)-(d) and 11 (e)-(h) show, respectively, 
the distribution of local Nusselt numbers at the top 
and bottom plates for the four structures present in 
the flow. For Sl, S2 and S3 [Figs. 11 (a)-(g)], the 
distributions of the hot and cold plates are perfectly 
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X’ 

, I ,‘ 

01 

0 0.5 1 

Y’ 
Fig. 8. Projection of the velocity vector field on the vertical 

plane Z* = 0.5 at Ra = 8000 for the structure S4. 

anti-symmetrical, in accordance with the presence of‘ 
a single rotating roll. The maps for S4 agree with a 
nearly toroidal structure with dominating descending 
currents at the vertical edges and a strong ascending 
current in the core. 

Although the distribution of local Nusselt numbers 
for Sl and S3 have a very similar appearance, a 
detailed study of Figs. 11 (a) and (c), and 11 (e) and (g), 
reveals a different heat transfer behaviour. Maximum 
heat transfer rates occur close to the vertical walls for 
S3 due to the elongation of this structure towards the 
two opposite horizontal edges parallel to the axis of 
rotation. This elongation provides extra space for flow 
circulation causing a decrease in recirculating vel- 
ocities and yielding slightly lower values for the Nus- 
selt numbers. The maps for S2 reveal that the orien- 
tation of the structure along the diagonal plane 
produces higher heat transfer rates, but in a narrower 
region than for the other two single roll structures. 
Among all different structures. S4 is by far the less 
effective for transferring heat between the top and 
bottom plates, as indicated by the lower values of the 
local Nusselt numbers given in Figs. 11 (d) and (h). 

Table 3 indicates the location (.u*.J*) where the 
maximum values of the Nusselt number occur at the 
hot plate, for the four structures Sl-S4. While at 
Ra = 4000 only Sl and S2 have different locations for 
the maximum heat transfer rates, at Ra = 9000 the 
location of the maximum value for S3 also separates 
from that of Sl, getting closer to the lateral wall. 
Maximum values are centered somewhere in the diag- 
onal for S2 and located near the center of the plate 
for S4, in accordance with the data of Figs. 11 (a)-(d). 

Surface averaged Nusselt numbers depend both on 

the Rayleigh number and on the kind of structure 
present in the flow, as shown in Fig. 12. The variation 
of the averaged Nusselt number with Rayleigh num- 
ber for structures Sl-S3 is clearly different from that 
corresponding to S4. The same critical Rayleigh 
number, of approximately 3500 is observed for the 
first three structures (Sl-S3). while the critical value 
for S4 occurs at around 7700, indicating two different 
bifurcations of the Navier-Stokes equations. The 
higher critical value for S4 suggests that this structure 
is more influenced by the lateral adiabatic walls. 

The three single roll structures Sl-S3 yield similar 
heat transfer characteristics. with Nusselt numbers 
increasing with a power of the Rayleigh number in 
the range 0.7-0.4. Figure 12 shows that Sl is the most 
efficient for transferring heat followed by S2, which is 
2% less efficient, and by S3. It is interesting to note 
that while S3 is topologically similar to Sl, it yields 
even lower heat transfer rates than S2. with a 4% drop 
at Ru = 4000 and a 7% at Ru = 10 000. The variation 
of the Nusselt number with the Rayleigh number for 
S4 is similar to that for the single roll structures, but 
with transfer rates 65% lower. 

CONCLUDING REMARKS 

This numerical study presents a detailed description 
of the topology of the different convective structures 
present in a cubical cavity heated below, in the range 
3500 < RN 6 10000, using air (Pr = 0.71) as working 
fluid. It is interesting to note the ability of the second 
invariant of the velocity gradient tensor n and the 
modulus of the vector product H to portray the struc- 
tural characteristics of the flow. While II gives closed 
surfaces that illustrate the structure characteristics, 
the 3D maps for Hdescribe the fluid venae. The spatial 
distributions of the four stable detected structures are 
influenced by the four adiabatic lateral walls which 
favour certain privileged orientations. Two structures, 
Sl and S3, have orientations parallel to two opposite 
lateral walls while the other two, S? and S4. are ori- 
ented along the diagonal of the top and bottom plates. 
The difference on the critical Rayleigh number for the 
single roll structures (SI. S2 and S3), Ra, = 3500, and 
for the toroidal structure S4, Ru, = 7700. suggests that 
there are different bifurcations of the Navier-Stokes 
equations. Moreover, the existence of four different 
structures makes the surface averaged Nusselt number 
dependent on the pattern adopted by the flow. The 
three single roll structures Sl-S3 yield heat transfer 
rates at the top and the bottom plates that are 65% 
higher that those of the toroidal roll S4. All the struc- 
tures are stable and do not evolve into other possible 
structures in the range 3500 < Ra < 10 000. 
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Fig. 11. Distribution of local Nusselt number at the bottom plate (a), (b), (c) and (d) and top plate 
(e), (f), (g) and (h) at Ra = 9000 for the structures Sl (a) and (e) ; S2 (b) and (f) ; S3 (c) and (g) ; S4 
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Table 3. Position of the maximum values of local Nusselt number at the bottom plate 

Sl s7 S3 S4 
RU Y* .1.* \-* 1.* .x* J.* \ * .I’+ 

4000 0.20 0.50 0.27 0.73 0.50 0.80 
9000 0.30 0.50 0.32 0.6X 0.50 0.75 0.50 0.50 

1.00 L 

3000 4wo 5000 m 7coO 8ooo 9ooo 10000 
Ra 

Fig. I?. Variation of the surface averaged Nusselt number with Rayleigh number for the four convective 
structures SI-S4. 
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